Menu
26th Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe 2012

26th Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe 2012

25 Videos · Dec 3, 2012

About

You are invited to participate in the Twenty-Sixth Annual Conference on Neural Information Processing Systems, which is the premier scientific meeting on Neural Computation.

Detailed information can be found at NIPS 2012 Conference homepage.


NIPS Spotlight Sessions videos are available at [[machine_learning_video_abstracts_vol3/]]

NIPS Workshops videos are available at [[nipsworkshops2012_laketahoe]]

Videos

Posner Lectures

video-img
48:07

Suspicious Coincidences in the Brain

Terrence J. Sejnowski

calendar icon Jan 16, 2013 8491 views

Invited Talks

video-img
53:11

Quantum information and the Brain

Scott Aaronson

calendar icon Jan 16, 2013 30426 views

video-img
18:47

Merck Molecular Activity Challenge

George E. Dahl

calendar icon Jan 16, 2013 5532 views

video-img
43:14

Classification with Deep Invariant Scattering Networks

Stéphane Mallat

calendar icon Jan 16, 2013 16482 views

video-img
25:19

Dropout: A simple and effective way to improve neural networks

Geoffrey E. Hinton

calendar icon Jan 16, 2013 54959 views

video-img
49:44

Signatures of Conscious Processing in the Human Brain

Stanislas Dehaene

calendar icon Jan 17, 2013 5433 views

Oral Sessions

video-img
21:06

Privacy Aware Learning

John Duchi

calendar icon Jan 16, 2013 4198 views

video-img
18:46

Bayesian nonparametric models for bipartite graphs

François Caron

calendar icon Jan 16, 2013 3592 views

video-img
16:07

Spectral Learning of General Weighted Automata via Constrained Matrix Completion

Borja Balle

calendar icon Jan 16, 2013 3565 views

video-img
14:26

Graphical Models via Generalized Linear Models

Eunho Yang

calendar icon Jan 16, 2013 5724 views

video-img
18:10

Relax and Randomize: From Value to Algorithms

Karthik Sridharan

calendar icon Jan 16, 2013 3434 views

video-img
14:27

Approximating Concavely Parameterized Optimization Problems

Sören Laue

calendar icon Jan 16, 2013 3994 views

video-img
18:19

Strategic Impatience in Go/NoGo versus Forced-Choice Decision-Making

Angela J. Yu

calendar icon Jan 16, 2013 4915 views

Private
video-img
17:20

On the (Non-)existence of Convex, Calibrated Surrogate Losses for Ranking

Clément Calauzènes

calendar icon Jan 11, 2013 2031 views

video-img
18:07

Gradient Weights help Nonparametric Regressors

Samory Kpotufe

calendar icon Jan 16, 2013 3383 views

video-img
15:12

High-Order Multi-Task Feature Learning to Identify Longitudinal Phenotypic Marke...

Hua Wang

calendar icon Jan 16, 2013 3956 views

video-img
15:11

TCA: High Dimensional Principal Component Analysis for non-Gaussian Data

Fang Han

calendar icon Jan 16, 2013 5995 views

video-img
17:59

Augmented-SVM: Automatic space partitioning for combining multiple non-linear dy...

Ashwini Shukla

calendar icon Jan 16, 2013 4357 views

video-img
15:16

A Unifying Perspective of Parametric Policy Search Methods for Markov Decision P...

Thomas Furmston

calendar icon Jan 16, 2013 2853 views

video-img
21:53

Near-Optimal MAP Inference for Determinantal Point Processes

Jennifer A. Gillenwater

calendar icon Jan 16, 2013 5828 views

video-img
19:00

No voodoo here! Learning discrete graphical models via inverse covariance estima...

Po-Ling Loh

calendar icon Jan 16, 2013 6465 views

video-img
15:20

A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Tra...

Nicolas Le Roux

calendar icon Jan 22, 2013 7445 views

video-img
16:16

Spectral learning of linear dynamics from generalisedlinear observations with ap...

Lars Buesing

calendar icon Jan 16, 2013 3191 views

video-img
16:41

Discriminative Learning of Sum-Product Networks

Robert Gens

calendar icon Jan 16, 2013 13644 views

video-img
15:36

Multimodal Learning with Deep Boltzmann Machines

Ruslan Salakhutdinov

calendar icon Jan 16, 2013 15067 views

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International license.