About
The school addresses the following topics: Learning Theory, Kernel Methods, Bayesian Machine learning, Monte Carlo Methods , Bayesian Nonparametrics, Optimization, Graphical Models, Information theory and Dimensionality Reduction.
Detailed information can be found here.
Videos
02:13:09
What is Machine Learning?
May 13, 2013 30914 views
01:35:21
Channel Coding with LDPC Codes
Jan 25, 2013 4896 views
05:24:16
Dimensionality Reduction
Jan 25, 2013 13826 views
04:27:20
Kernel Methods
Jan 25, 2013 15294 views
02:26:14
Bayesian Modelling
Jan 15, 2013 18303 views
01:16:16
Graphical Models
Jan 15, 2013 8322 views
01:47:17
Nonparametric Bayesian Modelling
Jan 15, 2013 8750 views
52:32
Dirichlet Process: Practical Course
Jan 15, 2013 11361 views
04:41:49
Concentration inequalities in machine learning
Jan 15, 2013 11758 views
05:11:50
Optimization: Theory and Algorithms
Jan 15, 2013 12554 views
03:24:27
Introduction to Bayesian Nonparametrics
Jan 15, 2013 25579 views
01:47:38
Kingman's Coalescent for Hierarchical Representations
Jan 15, 2013 4231 views
05:42:27
Diffusions and Geodesic Flows on Manifolds: The Differential Geometry of Markov ...
Jan 15, 2013 7318 views
01:25:50
Graph-based Semi-supervised Learning
Jan 15, 2013 6213 views
01:27:44
Gaussian Processes
Jan 15, 2013 14422 views
01:34:47
Probabilistic decision-making, data analysis, and discovery in astronomy
Jan 15, 2013 3917 views
38:31
Gaussian Process: Practical Course
Jan 15, 2013 8973 views
